MINISTERO DELLE POLITICHE AGRICOLE ALIMENTARI E FORESTALI

DECRETO 28 aprile 2014.

Approvazione del metodo ufficiale di analisi per la determinazione del contenuto di amminoacidi liberi nei formaggi.

IL DIRETTORE GENERALE

DELLA PREVENZIONE E DEL CONTRASTO
ALLE FRODI AGRO-ALIMENTARI
DEL MINISTERO DELLE POLITICHE AGRICOLE
ALIMENTARI E FORESTALI

DI CONCERTO CON

IL DIRETTORE GENERALE

PER L'IGIENE E LA SICUREZZA DEGLI ALIMENTI E DELLA NUTRIZIONE DEL MINISTERO DELLA SALUTE

IL DIRETTORE

DELL'AGENZIA DELLE DOGANE E DEI MONOPOLI

Ε

IL DIRETTORE GENERALE PER LA POLITICA INDUSTRIALE E LA COMPETITIVITÀ DEL MINISTERO DELLO SVILUPPO ECONOMICO

Visti gli articoli 43 del regio decreto-legge 15 ottobre 1925, n. 2033, convertito nella legge 18 marzo 1926, n. 562, recante disposizioni su «Repressione delle frodi nella preparazione e nel commercio di sostanze di uso agrario e di prodotti agrari» e 108 del regio decreto 1° luglio 1926, n. 1361, recante il regolamento di esecuzione del citato regio decreto-legge n. 2033/1925, i quali stabiliscono che le analisi dei prodotti e delle sostanze di cui al decreto-legge sono eseguite dai laboratori incaricati con i metodi ufficiali prescritti e adottati da questo Ministero di concerto con il Ministero delle finanze, della sanità e dell'industria commercio e artigianato;

Visto il decreto-legge 18 giugno 1986, n. 282, convertito, con modificazioni, nella legge 7 agosto 1986, n. 462, che all'art. 10 ha previsto l'istituzione dell'Ispettorato centrale repressione frodi presso il Ministero dell'agricoltura e foreste per l'esercizio, tra l'altro, delle funzioni inerenti alla prevenzione e repressione delle infrazioni nella preparazione e nel commercio dei prodotti agroalimentari e delle sostanze di uso agrario e forestale;

Visto il decreto del Presidente della Repubblica 14 febbraio 2012, n. 41, recante «Riorganizzazione del Ministero delle politiche agricole alimentari e forestali, (*omissis*)», che all'art. 4 ha previsto per l'Ispettorato centrale l'attuale denominazione di «Dipartimento dell'Ispettora-

— 13 -

to centrale della tutela della qualità e repressione frodi dei prodotti agro-alimentari» con acronimo ICQRF, riconfermando, tra le competenze allo stesso demandate, le funzioni in materia di aggiornamento delle metodiche ufficiali di analisi dei prodotti agroalimentari e delle sostanze di uso agrario e forestali;

Visto l'art. 2, comma 1, del decreto legislativo 30 luglio 1999, n. 300, così come modificato dal decreto-legge 16 maggio 2008, n. 85, convertito, con modificazioni, in legge 14 luglio 2008, n. 121, recante «Disposizioni urgenti per l'adeguamento delle strutture di governo in applicazione dell'art. 1, commi 376 e 377, della legge 24 dicembre 2007, n. 244» che stabilisce il numero e la denominazione dei Ministeri;

Visti gli articoli 57, 63 e 68, commi 1, del citato decreto legislativo n. 300/1999, in materia di istituzione delle agenzie fiscali, tra cui «l'Agenzia delle Dogane e dei Monopoli» e per quest'ultima, l'attribuzione delle competenze nonché l'individuazione delle funzioni di Direttore cui spetta la rappresentanza e la direzione dell'Agenzia delle Dogane e dei Monopoli medesima;

Vista la legge 13 novembre 2009, n. 172, recante, tra l'altro, l'istituzione del « Ministero della salute» entrata in vigore il 13 dicembre 2009;

Visto il decreto legislativo 30 marzo 2001, n. 165, e successive modificazioni;

Visto il decreto ministeriale 5 maggio 2006 del Ministro delle politiche agricole e forestali pro-tempore, concernente l'istituzione, a norma dell'art. 44 della legge 20 febbraio 2006, n. 82, della Commissione consultiva per l'aggiornamento dei metodi ufficiali di analisi dei prodotti agroalimentari e delle sostanze di uso agrario e forestale, articolata in dieci sottocommissioni con competenze settoriali, tra cui la Sottocommissione latte e derivati, istituita e nominata con decreto ministeriale 19 dicembre 2008, n. 1795, e successivamente modificata nella composizione con decreto ministeriale del 16 dicembre 2011;

Vista la Direttiva della Presidenza del Consiglio dei ministri 4 agosto 2010, relativa ad indirizzi interpretativi in materia di riordino degli organismi collegiali e di riduzione dei costi degli apparati amministrativi, che ha disposto l'operatività, in regime di proroga, della sopra richiamata Commissione consultiva, e delle relative Sottocommissioni, fino al trascorso 28 giugno 2012;

Visto il Regolamento di esecuzione (UE) n. 584/2011 della Commissione del 17 giugno 2011, recante approvazione delle modifiche non secondarie del disciplinare della denominazione «Grana Padano (DOP)», registrata nel registro delle denominazioni d'origine protette e delle indicazioni geografiche protette, nel quale si fa ri-

ferimento alla composizione amminoacidica specifica, da determinare mediante impiego della cromatografia a scambio ionico con rilevazione fotometrica post-colonna con ninidrina;

Visto il Regolamento (UE) n. 794/2011 della Commissione dell'8 agosto 2011, recante approvazione delle modifiche del disciplinare della denominazione «Parmigiano Reggiano», iscritta nel registro delle denominazioni d'origine protette e delle indicazioni geografiche protette, nel quale è previsto che la tipologia «grattugiato» presenti, tra gli altri requisiti, una composizione amminoacidica specifica del «Parmigiano Reggiano»;

Visti i decreti del Presidente del Consiglio dei ministri del 4 novembre 1991, con i quali si estendono la denominazione di origine del formaggio «Parmigiano Reggiano» e del formaggio «Grana Padano» alle rispettive tipologie «grattugiato», con l'espresso requisito della rispettiva composizione amminoacidica specifica;

Visto il Regolamento (CE) n. 882/2004 del Parlamento europeo e del Consiglio in materia di controlli ufficiali nei mangimi e negli alimenti, che dispone all'art. 11 Capo III: «Campionamento ed analisi», che i «metodi di analisi utilizzati nel contesto dei controlli ufficiali sono conformi alle pertinenti norme comunitarie o se tali norme non esistono, a norme o protocolli riconosciuti internazionalmente, (omissis), o quelli accettati dalla legislazione nazionale;» e che «i metodi di analisi devono essere caratterizzati, quando possibile, da opportuni criteri di precisione»;

Ritenuto necessario stabilire un metodo di analisi per il controllo del contenuto di amminoacidi liberi dei formaggi a Denominazione di Origine Protetta in precedenza citati, al fine di potenziare gli strumenti di tutela e salvaguardia dei prodotti registrati come denominazioni d'origine protette e indicazioni geografiche protette;

Considerato il parere in merito, espresso nella riunione del 15 luglio 2011, della Commissione consultiva per l'aggiornamento dei metodi ufficiali di analisi dei prodotti agroalimentari e delle sostanze di uso agrario e forestale - Sottocommissione latte e derivati, precedentemente richiamata;

Viste le risultanze, documentate con nota prot. DG-PREF n. 4953 del 4 aprile 2013 dell'ICQRF, del circuito interlaboratorio istituito con nota prot. EX DG PREF n. 9553 del 5 luglio 2012 dell'ICQRF, finalizzato alla validazione di un metodo di analisi per la determinazione del contenuto di amminoacidi liberi nei formaggi, mediante impiego della cromatografia a scambio ionico con rilevazione fotometrica post-colonna con ninidrina,

in conformità al parere della Commissione di cui al punto precedente, le quali hanno evidenziato l'idoneità del metodo ad essere impiegato per l'applicazione al controllo ufficiale:

Vista la direttiva 98/34/CE e successive modifiche, che prevede una procedura d'informazione nel settore delle norme e regolamentazioni tecniche;

Decreta:

Art. 1.

- 1. È approvato il metodo ufficiale di analisi per la determinazione del contenuto di amminoacidi liberi nei formaggi, descritto in allegato al presente decreto.
- 2. Il campo di applicazione del metodo di cui al comma 1 è definito nel metodo stesso.

Art. 2.

Il metodo di analisi di cui al presente decreto si applica al controllo dei prodotti nazionali.

Il presente decreto, che sarà trasmesso al competente organo di controllo, entra in vigore il giorno successivo alla sua pubblicazione nella *Gazzetta Ufficiale* della Repubblica italiana.


Roma, 28 aprile 2014

p. Il direttore generale
della prevenzione
e del contrasto alle frodi agro-alimentari
del Ministero delle politiche agricole
alimentari e forestali
Marianella

Il direttore generale
per l'igiene e la sicurezza degli alimenti
e la nutrizione
del Ministero della salute
Borrello

Il direttore dell'Agenzia delle Dogane e dei Monopoli PELEGGI

Il direttore generale per la politica industriale e la competitività del Ministero dello sviluppo economico Agrò

Decreto n. 6890

ALLEGATO: METODO DI ANALISI

FORMAGGIO - DETERMINAZIONE DEL CONTENUTO DI AMMINOACIDI LIBERI

1. SCOPO E CAMPO DI APPLICAZIONE

Questo standard descrive la determinazione del contenuto di amminoacidi liberi nel formaggio, con l'utilizzo di analizzatore di amminoacidi a scambio ionico, con riferimento agli amminoacidi riportati nella seguente Tabella 1:

Tab. 1 – Amminoacidi e rispettiva sigla

Amminoacido	Sigla
Acido Aspartico	ASP
Acido γ-amminobutirrico	GABA
Acido Glutammico	GLU
Alanina	ALA
Arginina	ARG
Asparagina	ASN
Citrullina	CIT
Fenilalanina	PHE
Glicina	GLY
Glutammina	GLN
Isoleucina	ILE
Istidina	HIS
Leucina	LEU
Lisina	LYS
Metionina	MET
Ornitina	ORN
Prolina	PRO
Serina	SER
Tirosina	TYR
Treonina	THR
Valina	VAL

AVVERTENZA: L'utilizzo del presente metodo può richiedere l'uso di sostanze pericolose o l'esecuzione di operazioni che comportano un certo rischio. Il presente metodo non ha lo scopo di affrontare tutti i problemi di sicurezza connessi col suo impiego, l'utilizzatore è responsabile della definizione di procedure di sicurezza appropriate e del rispetto della legislazione vigente.

2. NORMATIVA DI RIFERIMENTO

UNI EN ISO 3696:1996 – Acqua per uso analitico in laboratorio. Requisiti e metodi di prova.

ISO 707:2008 (IDF 50:2008) – Milk and milk products. Guidance on sampling

UNI ISO 5725-2:2004 - Accuratezza (esattezza e precisione) dei risultati e dei metodi di misurazione - Parte 2: Metodo base per determinare la ripetibilità e la riproducibilità di un metodo di misurazione normalizzato

3. TERMINI E DEFINIZIONI

- **3.1.** Contenuto in amminoacido XXX (sigla): quantità di amminoacido XXX nel campione, espressa in mg/kg
- **3.2.** Amminoacidi liberi totali: somma del contenuto degli amminoacidi di cui alla tabella 1, espressi in mg/kg.

4. PRINCIPIO

Il formaggio viene solubilizzato con tampone sodio citrato; le macromolecole in soluzione sono precipitate con acido solfosalicilico e rimosse per filtrazione.

La soluzione filtrata contenente gli amminoacidi liberi viene opportunamente diluita e gli amminoacidi sono separati per cromatografia a scambio ionico e determinati per reazione post-colonna con ninidrina e rivelazione fotometrica a 570 e 440 nm.

5. REAGENTI

- **5.1.** Acqua, ultrapura di Tipo I, secondo la norma UNI ISO 3696
- **5.2. Acido cloridrico**, fumante 37%
- **5.3. 2,2'-Tio-dietanolo** (tiodiglicol), soluzione acquosa 25% per la preparazione dei tamponi di eluizione

- **5.4. 2-Propanolo**, per la preparazione dei tamponi di eluizione
- 5.5. Amminoacidi standard, elencati al paragrafo 1
- **5.6. Soluzione di sodio idrossido**, 12 mol/L. Sciogliere 480 g di NaOH in acqua e portare a 1 L
- **5.7. Tampone sodio citrato**, 0,2 mol/L, pH 2,20, per estrazione degli amminoacidi liberi. Sciogliere 19,61 g di sodio citrato diidrato, 400 mg di EDTA sale bisodico, 100mL di pentaclorofenolo (50 mg di pentaclorofenolo sciolti in 10 mL di alcool etilico) e 16 mL di acido cloridrico in ca. 800 mL di acqua. Lasciare in agitazione per 24 ore, aggiustare il pH a 2,20 con acido cloridrico, controllando con pH-metro (6.2), portare a 1 L con acqua quindi filtrare sotto vuoto su membrana di acetato di cellulosa, con pori da 0,2 μm
- 5.8. Acido 5-solfosalicilico, β =7,5%, deproteinizzante. Sciogliere 75 g di acido 5-solfosalicilico diidrato in ca. 800 mL di tampone citrato (5.7). Aggiustare il pH a 1,7-1,8 con soluzione di sodio idrossido (5.6), portare a 1 L con tampone citrato (5.7) quindi filtrare sotto vuoto su membrana di acetato di cellulosa, con pori da 0,45 μ m (6.6)
- 5.9. Tampone litio citrato, per la diluizione dei campioni e degli standard di riferimento. Sciogliere 8,4 g di litio idrossido monoidrato, 9,6 g di acido citrico, 100mL di pentaclorofenolo (50 mg di pentaclorofenolo sciolti in 10 mL di alcool etilico) e 8 mL di 2,2'-Tio-dietanolo, soluzione acquosa 25%, in circa 800 mL di acqua. Lasciare in agitazione per 24 ore, aggiustare il pH a 2,20 con acido cloridrico (5.2), controllando con pH-metro (6.2), portare a 1 L con acqua quindi filtrare sotto
- **5.10. Soluzione di norleucina a circa 600 mg/L**, come standard interno. In un matraccio tarato da 100 mL pesare, con bilancia analitica (6.1), circa 60 mg di norleucina e portare a volume con tampone litio citrato (5.9). La soluzione va

vuoto su membrana di acetato di cellulosa, con pori da 0,2 μm (6.6)

5.11. Ninidrina, preparata secondo le indicazioni del produttore

conservata in frigorifero e ha durata di 6 mesi

Tamponi di eluizione, acquistati pronti oppure preparati in laboratorio, secondo le indicazioni in Tabella 1.

I tamponi sono preparati con sali di litio necessari per la separazione dell'asparagina e della glutammina. Il metodo necessita di cinque tamponi di eluizione e di una soluzione rigenerante.

La loro composizione è fornita nella Tabella 2 (pesate per 1 L di soluzione):

Tab. 2 – Composizione tamponi di eluizione

	TAMPONE N° 1	TAMPONE N° 2	TAMPONE N° 3	TAMPONE N° 4	TAMPONE N° 5	TAMPONE N° 6	TAMPONE DILUITORE
pН	2.84	3.00	3.15	3.50	3.58		2.20
MOLARITA' (LI ⁺)	0,2	0,3	0,5	0,9	1,62	0,3	0,2
LITIO IDROSSIDO MONOIDRATO	g 8,4	g 8,4	g 8,4	g 4,2	g 7,0	g 12,59	g 8,4
ACIDO CITRICO	g 9,6	g 9,6	g 9,6	g 9,6	g 21,0		g 9,6
LITIO CLORURO		g 4,25	g 12,72	g 34,0	g 61,5		
PENTACLORO- FENOLO	mL 0,1						
TIODIGLICOLE (25%)	mL 8	mL 8	mL 8				mL 8
2-PROPANOLO	mL 15	mL 15					
ACIDO CLORIDRICO 37%	~mL 14	~mL 13	~mL 12	~mL 3			~mL 14

6. APPARECCHIATURA

Comune apparecchiatura di laboratorio, ed in particolare:

- **6.1. Bilancia analitica**, con sensibilità 0,1 mg
- **6.2.** pH-metro, con sensibilità 0.01 unità pH
- 6.3. Agitatore magnetico
- **6.4. Omogeneizzatore** tipo Ultra-Turrax
- **6.5. Buretta elettronica**, oppure pipette tarate di vetro
- **6.6. Filtri a membrana inerti da siringa**, pori da 0,2 μm e da 0,45 μm
- **6.7. Filtri di carta,** rapidi (tipo S&S 589/1, Whatman Grade 41 o equivalente)
- **6.8. Filtri di carta**, lenti (tipo S&S 589/3, Whatman Grade 42 o equivalente)
- **6.9. Cromatografo a scambio ionico**, provvisto di colonna a scambio ionico, bagno di reazione termostatato per la derivatizzazione post-colonna con ninidrina e rivelatore fotometrico capace di leggere a lunghezze d'onda di 570 e 440 nm.

7. CAMPIONAMENTO

Il campionamento non è parte del metodo specificato in questa norma. Un metodo di campionamento raccomandato si trova in ISO707/IDF50.

Al laboratorio deve essere inviato un campione rappresentativo. Esso non deve essere stato danneggiato o modificato durante il trasporto o la conservazione.

Il laboratorio conserva il campione in modo da evitare il deterioramento o modifiche nella composizione.

8. PREPARAZIONE DEL CAMPIONE

8.1. Preparazione del campione

Prima dell'estrazione degli amminoacidi liberi, il campione di formaggio deve essere finemente macinato.

8.2. Estrazione degli amminoacidi liberi

La procedura di estrazione degli amminoacidi liberi viene svolta a temperatura ambiente, indicativamente non superiore a 25 °C.

In un becher da 100 mL pesare, con bilancia analitica (6.1), 1,5 g di formaggio finemente macinato, quindi aggiungere, con buretta elettronica o con pipetta di vetro tarata, 40 mL di tampone sodio citrato 0,2 N pH 2.20 (5.7). Porre il becher su agitatore magnetico in presenza di ancorina magnetica e lasciare in agitazione per 15 minuti. Passare la soluzione sotto omogeneizzatore (6.4), alla velocità minima, per 5 minuti, quindi filtrare su filtro di carta veloce (6.7) in una beuta da 100 mL.

Prelevare, con pipetta di vetro tarata, 10 mL del filtrato e trasferire in matraccio tarato da 25 mL. Quindi, in presenza di ancorina magnetica, porre in agitazione su agitatore (6.3) e aggiungere, goccia a goccia, 10 mL di soluzione di acido solfosalicilico 7,5 %, pH 1,7-1,8 (5.8). Lasciare agitare per 5 min. e portare a volume con tampone citrato 0,2 N a pH 2,2 (5.7); agitare, poi filtrare su filtro carta lento (6.8) in provetta. Prelevare, con pipetta di vetro tarata, 10 mL del filtrato e trasferire in un matraccio tarato da 100 mL, aggiungere 2 mL di soluzione di norleucina a circa 600 mg/L (5.10) e portare a volume con tampone litio citrato (5.9). Filtrare la soluzione così ottenuta con filtro siringa su membrana di cellulosa rigenerata (RC) con pori da 0,2 μm prima di procedere all'analisi strumentale.

8.3. Preparazione delle soluzioni standard di riferimento

8.3.1. Miscela di riferimento concentrata di amminoacidi, a circa:

- 300 mg/L per: Acido γ-Amminobutirrico, Citrullina, Glicina, Glutammina;
- •400 mg/L per: Alanina, Arginina, Asparagina, Metionina, Ornitina, Tirosina, Treonina;
- 600 mg/L per: Acido Aspartico, Fenilalanina, Isoleucina, Istidina, Serina;
- 800 mg/L per: Leucina, Prolina, Valina;
- 900 mg/L per: Acido Glutammico, Lisina.

8.3.4.

In un matraccio tarato da 100 mL pesare, con bilancia analitica, circa 30 mg di Acido γ-Amino-Butirrico, Citrullina, Glicina, Glutammina, circa 40 mg di Alanina, Arginina, Asparagina, Metionina, Ornitina, Tirosina, Treonina, circa 60 mg di Acido Aspartico, Fenilalanina, Isoleucina, Istidina, Serina, circa 80 mg di Leucina, Prolina, Valina e circa 90 mg di Acido Glutammico e Lisina. Portare a volume con tampone litio citrato (3.9). Nel calcolo delle concentrazioni tener conto della purezza di ciascuno degli amminoacidi pesati. La soluzione va conservata in congelatore e ha durata di 6 mesi.

8.3.2. Miscela di riferimento intermedia di amminoacidi:

In un matraccio tarato da 100 mL trasferire, con pipetta di vetro tarata, 50 mL della miscela concentrata e portare a volume con tampone litio citrato (3.9). La soluzione va conservata in congelatore e ha durata di 6 mesi.

8.3.3. Miscela di riferimento diluita "A" di amminoacidi a circa:

- 0,75 mg/L per: Acido γ-Amminobutirrico, Citrullina, Glicina, Glutammina;
- •1,0 mg/L per: Alanina, Arginina, Asparagina, Metionina, Ornitina, Tirosina, Treonina;
- 1,5 mg/L per: Acido Aspartico, Fenilalanina, Isoleucina, Istidina, Serina;
- 2,0 mg/L per: Leucina, Prolina, Valina;
- 2,25 mg/L per: Acido Glutammico, Lisina.

In un matraccio tarato da 100 mL trasferire, con pipette in vetro tarate, 0,5 mL della miscela di riferimento intermedia di amminoacidi e 2 mL della soluzione di norleucina a circa 600 mg/L (3.10). Portare a volume con tampone litio citrato (3.9). La soluzione va conservata in congelatore e ha durata di 2 mesi.

Miscela di riferimento diluita "B" di amminoacidi a circa:

- 1,5 mg/L per: Acido γ-Amminobutirrico, Citrullina, Glicina, Glutammina;
- •2,0 mg/L per: Alanina, Arginina, Asparagina, Metionina, Ornitina, Tirosina, Treonina;
- 3,0 mg/L per: Acido Aspartico, Fenilalanina, Isoleucina, Istidina, Serina;
- 4,0 mg/L per: Leucina, Prolina, Valina;
- 4,5 mg/L per: Acido Glutammico, Lisina.

In un matraccio tarato da 100 mL trasferire, con pipette in vetro tarate, 1 mL della miscela di riferimento intermedia di amminoacidi e 2 mL della soluzione di norleucina a circa 600 mg/L (3.10). Portare a volume con tampone litio citrato (3.9).

La soluzione va conservata in congelatore e ha durata di 2 mesi.

8.3.5. Miscela di riferimento diluita "C" di amminoacidi a circa:

- 3,0 mg/L per: Acido γ-Amminobutirrico, Citrullina, Glicina, Glutammina;
- •4,0 mg/L per: Alanina, Arginina, Asparagina, Metionina, Ornitina, Tirosina, Treonina;
- 6,0 mg/L per: Acido Aspartico, Fenilalanina, Isoleucina, Istidina, Serina;
- 8,0 mg/L per: Leucina, Prolina, Valina;
- 9,0 mg/L per: Acido Glutammico, Lisina.

In un matraccio tarato da 100 mL trasferire, con pipette in vetro tarate, 2 mL della miscela di riferimento intermedia di amminoacidi e 2 mL della soluzione di norleucina a circa 600 mg/L (3.10). Portare a volume con tampone litio citrato (3.9).

La soluzione va conservata in congelatore e ha durata di 2 mesi.

8.3.6. Miscela di riferimento diluita "D" di amminoacidi a circa:

- 7,5 mg/L per: Acido γ-Amminobutirrico, Citrullina, Glicina, Glutammina;
- 10,0 mg/L per: Alanina, Arginina, Asparagina, Metionina, Ornitina, Tirosina, Treonina;
- 15,0 mg/L per: Acido Aspartico, Fenilalanina, Isoleucina, Istidina, Serina;
- 20,0 mg/L per: Leucina, Prolina, Valina;
- 22,5 mg/L per: Acido Glutammico, Lisina.

In un matraccio tarato da 100 mL trasferire, con pipette in vetro tarate, 5 mL della miscela di riferimento intermedia di amminoacidi e 2 mL della soluzione di norleucina a circa 600 mg/L (3.10). Portare a volume con tampone litio citrato (3.9).

La soluzione va conservata in congelatore e ha durata di 2 mesi.

9. PROCEDURA

9.1. Separazione degli amminoacidi liberi

9.1.1. Principio del metodo

Il principio analitico si basa sulla eluizione del campione da una colonna cromatografica a scambio ionico, seguita da derivatizzazione post-colonna con ninidrina, rivelazione con colorimetro, acquisizione e successiva elaborazione dei dati mediante computer dotato di apposito software.

Il confronto dei diversi tempi di ritenzione con quelli di una soluzione di amminoacidi standard (6.1-6.6) consente di individuare i singoli amminoacidi presenti nel campione.

Il laboratorio verifica la propria capacità di applicare il metodo, con particolare riferimento alla capacità separativa (con riguardo soprattutto alla tripletta ASN/GLU/GLN) e alla linearità della risposta.

9.1.2. Condizioni cromatografiche

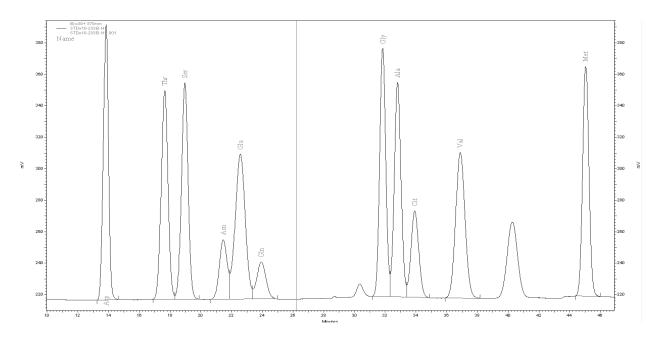
Impostare lo strumento secondo le seguenti condizioni:

•volume iniettato: 100 μl di campione precedentemente filtrato su acetato di cellulosa 0,2 μm

velocità flusso tamponi: 20 mL/h
velocità flusso Ninidrina: 20 mL/h

• durata dell'acquisizione dati: 160 min. circa

• tempo di rigenerazione: 47 min.


temperatura bagno di reazione: 135°C
gradiente di eluizione: vd. Tabella 3

Tab. 3 – gradiente di eluizione

Nº	Тетро	Temp	Tampone (vd. Tab. 1)	Flusso	Nininidrina	Comandi
1	01:00	31°C	1	20mL/h	ON	
2	00:00	31°C	1	20mL/h	ON	Reset
3	01:00	31°C	1	20mL/h	ON	Load
4	05:30	31°C	1	20mL/h	ON	
5	38:00	31°C	2	20mL/h	ON	
6	17:00	40°C	3	20mL/h	ON	
7	10:00	64°C	3	20mL/h	ON	
8	34:00	64°C	4	20mL/h	ON	
9	50:00	76°C	5	20mL/h	ON	
10	06:00	76°C	6	20mL/h	ON	
11	10:00	31°C	1	20mL/h	ON	
12	01:00	31°C	1	OFF	OFF	
13	30:00	31°C	1	25mL/h	OFF	
14	06:00	31°C	1	20mL/h	ON	
Fine						

In fig. 1 è riportato un esempio di separazione cromatografica degli amminoacidi. Le condizioni di separazione sopra indicate possono essere modificate, assicurando comunque una capacità di separazione degli amminoacidi almeno pari a quella riportata in figura 1.

Fig. 1 – Separazione degli amminoacidi liberi di una soluzione standard (con particolare riferimento alle triplette critiche ASN-GLU-GLN e GLY-ALA-CIT)

10. CALCOLI ED ESPRESSIONE DEI RISULTATI

10.1. Calcoli

A partire dai valori ottenuti per le quattro soluzioni standard di amminoacidi (8.3.3-8.3.6) si costruiscono le rette di taratura dei singoli amminoacidi. Nella determinazione delle rispettive equazioni, le rette di taratura sono forzate a passare attraverso l'origine degli assi.

Per interpolazione lineare sulle rispettive rette di taratura, si derivano le concentrazioni dei singoli amminoacidi, presenti nelle soluzioni (8.2) di estrazione dei campioni.

Il risultato viene riportato alla quantità iniziale di campione.

10.2. Espressione dei risultati

Il risultato viene espresso, per ciascun amminoacido, in mg di amminoacido per kg di campione di formaggio, senza cifre decimali.

11. PRECISIONE

I valori di ripetibilità e riproducibilità, per ciascun amminoacido, sono stati ottenuti in un circuito interlaboratorio, eseguito nel 2012 (vd. Allegato A). Le prove sono state effettuate su campioni con contenuto di amminoacidi liberi totali variabili tra circa 57000 mg/kg e 80000 mg/kg e con contenuto del singolo amminoacido variabile da circa 100 mg/kg (GABA) a circa 13000 mg/kg (GLU).

11.1. Ripetibilità

Fare riferimento ai dati riportati nella Tabella 4.

11.2. Riproducibilità

Fare riferimento ai dati riportati nella Tabella 4.

Tab. 4 – Valori di scarto tipo di ripetibilità e scarto tipo di riproducibilità per singolo amminoacido, ottenuti

	F	Ripetibilità (d	5 _r)	Riproducibilità (σ _R)			
	Media	y = m	x + b ¹	Media	$y = mx + b^1$		
	$\sigma_{\rm r}$	m	b	σ_{R}	m	b	
ASP	23	0,017	-13,437	165	0,055	47,353	
GABA	10	0,008	8,605	42	0,123	23,704	
GLU	129	0,006	56,718	389	0,026	85 <i>,</i> 965	
ALA	27	0,043	-49,995	132	0,042	57,752	
ARG	28	0,011	13,396	93	0,033	49,429	
ASN	42	0,002	35,914	136	0,122	-237,218	
CIT	37	0,022	-4,933	113	0,040	35,943	
PHE	46	0,002	40,108	167	0,088	-137,105	
GLY	21	0,008	7,391	108	0,041	39,611	
GLN	45	0,025	27,105	89	0,070	39,611	
ILE	97	0,082	-261,360	201	0,102	-244,161	
HIS	37	0,016	3,253	154	0,034	81,302	
LEU	139	0,091	-430,871	370	-0,017	474,065	
LYS	76	0,004	43,866	377	-0,007	433,832	
MET	42	0,084	-91,746	110	0,143	-119,131	
ORN	7	0,013	3,911	28	0,045	19,295	
PRO	134	0,051	-187,572	349	-0,117	1094,494	
SER	52	0,013	2,414	234	0,043	65,764	
TYR	111	0,484	-766,276	195	0,282	-316,060	
THR	25	0,010	1,490	106	0,003	99,774	
VAL	54	0,017	-29,961	216	0,040	20,369	
AA TOT	596	0,022	-925,668	2907	0,051	-610,841	

 $^{^1}$ Nell'equazione riportata (y = mx + b), y corrisponde a $\sigma_{r/R}$ e x corrisponde alla concentrazione in mg/kg del singolo amminoacido

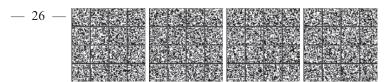
12. BIBLIOGRAFIA

- D.H. Spackman, W.H. Stein, e S. Moore, Anal. Chem., 30, 1190 (1958);
- J.V. Benson, Jr, M.J. Gordon, e J.A. Patterson, Anal. Biochem., 18, 228 (1967);
- Rapporto finale del circuito interlaboratorio CI 02.01.2012, trasmesso dal Dipartimento dell'Ispettorato centrale della tutela della qualità e repressione frodi dei prodotti agroalimentari (ICQRF), con nota DG PREF - Laboratorio Centrale di Roma - prot. n.0004953 del 04/04/2013.

13. ALLEGATO A (INFORMATIVO) – RISULTATI DEL CIRCUITO INTERLABORATORIO

Il circuito interlaboratorio organizzato per la validazione del presente metodo si è realizzato nel corso dell'anno 2012. I risultati ottenuti nelle due prove sono stati oggetto di analisi statistica in accordo con la ISO 5725-2:2004, per fornire i dati di precisione riportati nella seguente tabella A.1.

Il circuito è stato eseguito su quattro campioni con contenuto variabile di amminoacidi singoli (da circa 100 mg/kg a circa 13000 mg/kg) e di amminoacidi liberi totali (da circa 57000 mg/kg a 80000 mg/kg).


Al circuito hanno partecipato 7 laboratori esperti. Nessun laboratorio è stato escluso dalla prova. Alcuni risultati sono stati esclusi dall'elaborazione statistica a seguito dell'applicazione dei test di Cochran e di Grubbs. Si rinvia al Rapporto del circuito (vd. bibliografia) per maggiori dettagli.

Si riporta di seguito una tabella riassuntiva con i dati di maggior interesse, ricavati dal circuito.

Tab. A.1 – Risultati circuito interlaboratorio amminoacidi liberi

		ASP	GABA	GLU	ALA	ARG	ASN	CIT	PHE	GLY	GLN	ILE
	media (mg/kg)	2651	139	13816	1994	242	3387	2989	3913	2386	609	4957
	s _r	24	13	110	49	16	49	91	44	26	39	127
Camp 1	s _R	214	45	443	140	47	236	203	202	138	95	284
	CV%r	0,9%	9,6%	0,8%	2,5%	6,4%	1,5%	3,0%	1,1%	1,1%	6,3%	2,6%
	CV%R	8,1%	32,5%	3,2%	7,0%	19,3%	7,0%	6,8%	5,2%	5,8%	15,7%	5,7%
	media (mg/kg)	2523	210	12261	1908	2188	2891	1205	3512	1557	350	4807
	s _r	37	9	168	24	55	38	14	56	24	38	174
Camp 2	s _R	173	48	423	158	216	182	94	184	109	57	293
	CV%r	1,5%	4,2%	1,4%	1,3%	2,5%	1,3%	1,2%	1,6%	1,5%	10,9%	3,6%
	CV%R	6,9%	22,8%	3,5%	8,3%	9,9%	6,3%	7,8%	5,2%	7,0%	16,3%	6,1%
	media (mg/kg)	2077	100	11598	1776	328	3213	2872	3615	1550	494	4236
	s _r	25	7	144	16	15	36	30	40	18	38	49
Camp 3	s _R	139	33	370	105	60	51	99	172	99	72	54
	CV%r	1,2%	7,0%	1,2%	0,9%	4,7%	1,1%	1,0%	1,1%	1,1%	7,6%	1,2%
	CV%R	6,7%	33,1%	3,2%	5,9%	18,1%	1,6%	3,5%	4,8%	6,4%	14,5%	1,3%
	media (mg/kg)	1390		8920	1417	2459	2752	578	2877	1155	1346	3493
	s _r	8		94	16	26	47	15	42	15	62	39
Camp 4	s _R	134		321	124	48	74	54	111	87	132	171
	CV%r	0,6%		1,1%	1,2%	1,1%	1,7%	2,6%	1,5%	1,3%	4,6%	1,1%
	CV%R	9,7%		3,6%	8,7%	2,0%	2,7%	9,4%	3,9%	7,5%	9,8%	4,9%
		HIS	LEU	LYS	MET	ORN	PRO	SER	TYR	THR	VAL	AA TOT
	media (mg/kg)	2184	6688	9346	1925	382	7060	4540	1858	1849	5640	79059
	media (mg/kg)											
Camp 1	s _r	2184	6688	9346	1925	382	7060	4540	1858	1849	5640	79059
Camp 1	s _r	2184 56	6688 198	9346 67	1925 67	382 10	7060 200	4540 <i>44</i>	1858 165	1849 22	5640 62	79059 864 4251 1,1%
Camp 1	s _r	2184 56 153 2,5% 7,0%	6688 198 478 3,0% 7,2%	9346 67 421 0,7% 4,5%	1925 67 152 3,5% 7,9%	382 10 36	7060 200 260	4540 44 287 1,0% 6,3%	1858 165 266	1849 22 108	5640 62 321 1,1% 5,7%	79059 864 4251 1,1% 5,4%
Camp 1	s _r s _R CV%r	2184 56 153 2,5%	6688 198 478 3,0%	9346 67 421 0,7%	1925 67 152 3,5%	382 10 36 2,6%	7060 200 260 2,8%	4540 44 287 1,0%	1858 165 266 8,9%	1849 22 108 1,2%	5640 62 321 1,1%	79059 864 4251 1,1%
	s _r s _R CV%r CV%R	2184 56 153 2,5% 7,0% 1980 37	6688 198 478 3,0% 7,2% 6226 264	9346 67 421 0,7% 4,5% 8180	1925 67 152 3,5% 7,9% 1722	382 10 36 2,6% 9,4% 102	7060 200 260 2,8% 3,7% 6377 139	4540 44 287 1,0% 6,3% 4651 69	1858 165 266 8,9% 14,3% 1682 63	1849 22 108 1,2% 5,8% 2620 23	5640 62 321 1,1% 5,7% 4988 74	79059 864 4251 1,1% 5,4% 72008 828
Camp 1	s _r s _R CV%r CV%R media (mg/kg) s _r s _R	2184 56 153 2,5% 7,0% 1980 37 168	6688 198 478 3,0% 7,2% 6226 264 375	9346 67 421 0,7% 4,5% 8180 100 342	1925 67 152 3,5% 7,9% 1722 64 167	382 10 36 2,6% 9,4% 102 9	7060 200 260 2,8% 3,7% 6377 139 373	4540 44 287 1,0% 6,3% 4651 69 250	1858 165 266 8,9% 14,3% 1682 63 141	1849 22 108 1,2% 5,8% 2620 23 148	5640 62 321 1,1% 5,7% 4988 74 84	79059 864 4251 1,1% 5,4% 72008 828 3338
	s _r s _R CV%r CV%R media (mg/kg) s _r s _R CV%r	2184 56 153 2,5% 7,0% 1980 37 168 1,9%	6688 198 478 3,0% 7,2% 6226 264 375 4,2%	9346 67 421 0,7% 4,5% 8180 100 342 1,2%	1925 67 152 3,5% 7,9% 1722 64 167 3,7%	382 10 36 2,6% 9,4% 102 9 26 8,9%	7060 200 260 2,8% 3,7% 6377 139 373 2,2%	4540 44 287 1,0% 6,3% 4651 69 250 1,5%	1858 165 266 8,9% 14,3% 1682 63 141 3,8%	1849 22 108 1,2% 5,8% 2620 23 148 0,9%	5640 62 321 1,1% 5,7% 4988 74 84 1,5%	79059 864 4251 1,1% 5,4% 72008 828 3338 1,2%
	s _r s _R CV%r CV%R media (mg/kg) s _r s _R CV%r CV%R	2184 56 153 2,5% 7,0% 1980 37 168 1,9% 8,5%	6688 198 478 3,0% 7,2% 6226 264 375 4,2% 6,0%	9346 67 421 0,7% 4,5% 8180 100 342 1,2% 4,2%	1925 67 152 3,5% 7,9% 1722 64 167 3,7% 9,7%	382 10 36 2,6% 9,4% 102 9 26 8,9% 25,8%	7060 200 260 2,8% 3,7% 6377 139 373 2,2% 5,8%	4540 44 287 1,0% 6,3% 4651 69 250 1,5% 5,4%	1858 165 266 8,9% 14,3% 1682 63 141 3,8% 8,4%	1849 22 108 1,2% 5,8% 2620 23 148 0,9% 5,7%	5640 62 321 1,1% 5,7% 4988 74 84 1,5%	79059 864 4251 1,1% 5,4% 72008 828 3338 1,2% 4,6%
	s _r s _R CV%r CV%R media (mg/kg) s _r s _R CV%r CV%R media (mg/kg)	2184 56 153 2,5% 7,0% 1980 37 168 1,9% 8,5% 2317	6688 198 478 3,0% 7,2% 6226 264 375 4,2% 6,0% 6616	9346 67 421 0,7% 4,5% 8180 100 342 1,2% 4,2% 7803	1925 67 152 3,5% 7,9% 1722 64 167 3,7% 9,7%	382 10 36 2,6% 9,4% 102 9 26 8,9% 25,8% 253	7060 200 260 2,8% 3,7% 6377 139 373 2,2% 5,8% 6628	4540 44 287 1,0% 6,3% 4651 69 250 1,5% 5,4% 3708	1858 165 266 8,9% 14,3% 1682 63 141 3,8% 8,4%	1849 22 108 1,2% 5,8% 2620 23 148 0,9% 5,7% 2450	5640 62 321 1,1% 5,7% 4988 74 84 1,5% 1,7% 4880	79059 864 4251 1,1% 5,4% 72008 828 3338 1,2% 4,6% 69364
Camp 2	s _r s _R CV%r CV%R media (mg/kg) s _r s _R CV%r CV%R media (mg/kg)	2184 56 153 2,5% 7,0% 1980 37 168 1,9% 8,5% 2317 31	6688 198 478 3,0% 7,2% 6226 264 375 4,2% 6,0% 6616	9346 67 421 0,7% 4,5% 8180 100 342 1,2% 4,2% 7803	1925 67 152 3,5% 7,9% 1722 64 167 3,7% 9,7% 1519	382 10 36 2,6% 9,4% 102 9 26 8,9% 25,8% 253 5	7060 200 260 2,8% 3,7% 6377 139 373 2,2% 5,8% 6628	4540 44 287 1,0% 6,3% 4651 69 250 1,5% 5,4% 3708 63	1858 165 266 8,9% 14,3% 1682 63 141 3,8% 8,4% 2000 188	1849 22 108 1,2% 5,8% 2620 23 148 0,9% 5,7% 2450 36	5640 62 321 1,1% 5,7% 4988 74 84 1,5% 1,7% 4880 44	79059 864 4251 1,1% 5,4% 72008 828 3338 1,2% 4,6% 69364 267
	s _r s _R CV%r CV%R media (mg/kg) s _r s _R CV%r CV%R media (mg/kg)	2184 56 153 2,5% 7,0% 1980 37 168 1,9% 8,5% 2317 31 166	6688 198 478 3,0% 7,2% 6226 264 375 4,2% 6,0% 6616 64	9346 67 421 0,7% 4,5% 8180 100 342 1,2% 4,2% 7803 77 308	1925 67 152 3,5% 7,9% 1722 64 167 3,7% 9,7% 1519 19	382 10 36 2,6% 9,4% 102 9 26 8,9% 25,8% 253 5	7060 200 260 2,8% 3,7% 6377 139 373 2,2% 5,8% 6628 102 306	4540 44 287 1,0% 6,3% 4651 69 250 1,5% 5,4% 3708 63 212	1858 165 266 8,9% 14,3% 1682 63 141 3,8% 8,4% 2000 188 216	1849 22 108 1,2% 5,8% 2620 23 148 0,9% 5,7% 2450 36 47	5640 62 321 1,1% 5,7% 4988 74 84 1,5% 1,7% 4880 44 235	79059 864 4251 1,1% 5,4% 72008 828 3338 1,2% 4,6% 69364 267 944
Camp 2	s _r s _R CV%r CV%R media (mg/kg) s _r s _R CV%r CV%R media (mg/kg) s _r s _R CV%r	2184 56 153 2,5% 7,0% 1980 37 168 1,9% 8,5% 2317 31 166 1,3%	6688 198 478 3,0% 7,2% 6226 264 375 4,2% 6,0% 6616 64 240 1,0%	9346 67 421 0,7% 4,5% 8180 100 342 1,2% 4,2% 7803 77 308 1,0%	1925 67 152 3,5% 7,9% 1722 64 167 3,7% 9,7% 1519 19 45 1,3%	382 10 36 2,6% 9,4% 102 9 26 8,9% 25,8% 253 5 31 1,9%	7060 200 260 2,8% 3,7% 6377 139 373 2,2% 5,8% 6628 102 306 1,5%	4540 44 287 1,0% 6,3% 4651 69 250 1,5% 5,4% 3708 63 212 1,7%	1858 165 266 8,9% 14,3% 1682 63 141 3,8% 8,4% 2000 188 216 9,4%	1849 22 108 1,2% 5,8% 2620 23 148 0,9% 5,7% 2450 36 47 1,5%	5640 62 321 1,1% 5,7% 4988 74 84 1,5% 1,7% 4880 44 235 0,9%	79059 864 4251 1,1% 5,4% 72008 828 3338 1,2% 4,6% 69364 267 944 0,4%
Camp 2	s _r s _R CV%r CV%R media (mg/kg) s _r s _R CV%r CV%R media (mg/kg) s _r s _R CV%r CV%R	2184 56 153 2,5% 7,0% 1980 37 168 1,9% 8,5% 2317 31 166 1,3% 7,2%	6688 198 478 3,0% 7,2% 6226 264 375 4,2% 6,0% 6616 64 240 1,0% 3,6%	9346 67 421 0,7% 4,5% 8180 100 342 1,2% 4,2% 7803 77 308 1,0% 4,0%	1925 67 152 3,5% 7,9% 1722 64 167 3,7% 9,7% 1519 19 45 1,3% 3,0%	382 10 36 2,6% 9,4% 102 9 26 8,9% 25,8% 253 5 31 1,9% 12,2%	7060 200 260 2,8% 3,7% 6377 139 373 2,2% 5,8% 6628 102 306 1,5% 4,6%	4540 44 287 1,0% 6,3% 4651 69 250 1,5% 5,4% 3708 63 212 1,7% 5,7%	1858 165 266 8,9% 14,3% 1682 63 141 3,8% 8,4% 2000 188 216 9,4% 10,8%	1849 22 108 1,2% 5,8% 2620 23 148 0,9% 5,7% 2450 36 47 1,5% 1,9%	5640 62 321 1,1% 5,7% 4988 74 84 1,5% 1,7% 4880 44 235 0,9% 4,8%	79059 864 4251 1,1% 5,4% 72008 828 3338 1,2% 4,6% 69364 267 944 0,4% 1,4%
Camp 2	s _r s _R CV%r CV%R media (mg/kg) s _r s _R CV%r CV%R media (mg/kg) s _r s _R CV%r CV%R	2184 56 153 2,5% 7,0% 1980 37 168 1,9% 8,5% 2317 31 166 1,3% 7,2% 2043	6688 198 478 3,0% 7,2% 6226 264 375 4,2% 6,0% 6616 64 240 1,0% 3,6% 5650	9346 67 421 0,7% 4,5% 8180 100 342 1,2% 4,2% 7803 77 308 1,0% 4,0% 6340	1925 67 152 3,5% 7,9% 1722 64 167 3,7% 9,7% 1519 19 45 1,3% 3,0% 1226	382 10 36 2,6% 9,4% 102 9 26 8,9% 25,8% 253 5 31 1,9% 12,2% 80	7060 200 260 2,8% 3,7% 6377 139 373 2,2% 5,8% 6628 102 306 1,5% 4,6% 5376	4540 44 287 1,0% 6,3% 4651 69 250 1,5% 5,4% 3708 63 212 1,7% 5,7% 2722	1858 165 266 8,9% 14,3% 1682 63 141 3,8% 8,4% 2000 188 216 9,4% 10,8% 1710	1849 22 108 1,2% 5,8% 2620 23 148 0,9% 5,7% 2450 36 47 1,5% 1,9% 2091	5640 62 321 1,1% 5,7% 4988 74 84 1,5% 1,7% 4880 44 235 0,9% 4,8% 3928	79059 864 4251 1,1% 5,4% 72008 828 3338 1,2% 4,6% 69364 267 944 0,4% 1,4% 57682
Camp 2	s _r s _R CV%r CV%R media (mg/kg) s _r s _R CV%r CV%R media (mg/kg) s _r s _R CV%r CV%R	2184 56 153 2,5% 7,0% 1980 37 168 1,9% 8,5% 2317 31 166 1,3% 7,2% 2043 23	6688 198 478 3,0% 7,2% 6226 264 375 4,2% 6,0% 6616 64 240 1,0% 3,6% 5650 29	9346 67 421 0,7% 4,5% 8180 100 342 1,2% 4,2% 7803 77 308 1,0% 4,0% 6340 60	1925 67 152 3,5% 7,9% 1722 64 167 3,7% 9,7% 1519 19 45 1,3% 3,0% 1226	382 10 36 2,6% 9,4% 102 9 26 8,9% 25,8% 253 5 31 1,9% 12,2% 80 2	7060 200 260 2,8% 3,7% 6377 139 373 2,2% 5,8% 6628 102 306 1,5% 4,6% 5376	4540 44 287 1,0% 6,3% 4651 69 250 1,5% 5,4% 3708 63 212 1,7% 5,7% 2722 31	1858 165 266 8,9% 14,3% 1682 63 141 3,8% 8,4% 2000 188 216 9,4% 10,8% 1710 30	1849 22 108 1,2% 5,8% 2620 23 148 0,9% 5,7% 2450 36 47 1,5% 1,9% 2091 18	5640 62 321 1,1% 5,7% 4988 74 84 1,5% 1,7% 4880 44 235 0,9% 4,8% 3928 36	79059 864 4251 1,1% 5,4% 72008 828 3338 1,2% 4,6% 69364 267 944 0,4% 1,4% 57682 426
Camp 2	s _r s _R CV%r CV%R media (mg/kg) s _r s _R CV%r CV%R media (mg/kg) s _r s _R CV%r CV%R	2184 56 153 2,5% 7,0% 1980 37 168 1,9% 8,5% 2317 31 166 1,3% 7,2% 2043 23 129	6688 198 478 3,0% 7,2% 6226 264 375 4,2% 6,0% 6616 64 240 1,0% 3,6% 5650 29 388	9346 67 421 0,7% 4,5% 8180 100 342 1,2% 4,2% 7803 77 308 1,0% 4,0% 6340 60 437	1925 67 152 3,5% 7,9% 1722 64 167 3,7% 9,7% 1519 19 45 1,3% 3,0% 1226 16 76	382 10 36 2,6% 9,4% 102 9 26 8,9% 25,8% 253 5 31 1,9% 12,2% 80 2	7060 200 260 2,8% 3,7% 6377 139 373 2,2% 5,8% 6628 102 306 1,5% 4,6% 5376 94 457	4540 44 287 1,0% 6,3% 4651 69 250 1,5% 5,4% 3708 63 212 1,7% 5,7% 2722 31 189	1858 165 266 8,9% 14,3% 1682 63 141 3,8% 8,4% 2000 188 216 9,4% 10,8% 1710 30 156	1849 22 108 1,2% 5,8% 2620 23 148 0,9% 5,7% 2450 36 47 1,5% 1,9% 2091 18 120	5640 62 321 1,1% 5,7% 4988 74 84 1,5% 1,7% 4880 44 235 0,9% 4,8% 3928 36 222	79059 864 4251 1,1% 5,4% 72008 828 3338 1,2% 4,6% 69364 267 944 0,4% 1,4% 57682 426 3093
Camp 2	s _r s _R CV%r CV%R media (mg/kg) s _r s _R CV%r CV%R media (mg/kg) s _r s _R CV%r CV%R	2184 56 153 2,5% 7,0% 1980 37 168 1,9% 8,5% 2317 31 166 1,3% 7,2% 2043 23	6688 198 478 3,0% 7,2% 6226 264 375 4,2% 6,0% 6616 64 240 1,0% 3,6% 5650 29	9346 67 421 0,7% 4,5% 8180 100 342 1,2% 4,2% 7803 77 308 1,0% 4,0% 6340 60	1925 67 152 3,5% 7,9% 1722 64 167 3,7% 9,7% 1519 19 45 1,3% 3,0% 1226	382 10 36 2,6% 9,4% 102 9 26 8,9% 25,8% 253 5 31 1,9% 12,2% 80 2	7060 200 260 2,8% 3,7% 6377 139 373 2,2% 5,8% 6628 102 306 1,5% 4,6% 5376	4540 44 287 1,0% 6,3% 4651 69 250 1,5% 5,4% 3708 63 212 1,7% 5,7% 2722 31	1858 165 266 8,9% 14,3% 1682 63 141 3,8% 8,4% 2000 188 216 9,4% 10,8% 1710 30	1849 22 108 1,2% 5,8% 2620 23 148 0,9% 5,7% 2450 36 47 1,5% 1,9% 2091 18	5640 62 321 1,1% 5,7% 4988 74 84 1,5% 1,7% 4880 44 235 0,9% 4,8% 3928 36	79059 864 4251 1,1% 5,4% 72008 828 3338 1,2% 4,6% 69364 267 944 0,4% 1,4% 57682 426

14A03885

